

GOVT. POLYTECHNIC KORAPUT DEPARTMENT OF ELECTRICAL ENGG.

Discipline: Electrical	Semester: 3 rd	Name of the Teaching Faculty: Sandhya Kumari Randhi
Subject: CNT	No. of Days/per week class allotted: 5	Semester From Date: No. of Weeks: 15
Week	Class Day	Theory/Practical Topics
1 st	01	Voltage, current, power and energy
	02	Resistance, Inductance & capacitance as parameters
	03	Active, Passive, Unilateral & bilateral, Linear & Non linear elements
	04	KVL and KCL, Voltage division & current division.
	05	Tutorial class
2 nd	01	Magnetizing force, Intensity, MMF, flux and their relations
	02	Permeability, reluctance and permeance
	03	Analogy between electric and Magnetic Circuits
	04	B-H Curve
	05	Tutorial class
3 rd	01	Series & parallel magnetic circuit
	02	Hysteresis loop
	03	Mesh Analysis, Mesh Equations by inspection
	04	Super mesh Analysis
	05	Tutorial class
4 th	01	Nodal Analysis, Nodal Equations by inspection, Super node Analysis
	02	Source Transformation Technique
	03	Star – delta transformation
	04	Super position Theorem
	05	Tutorial class
5 th	01	Thevenin's Theorem
	02	Norton's Theorem
	03	Reciprocity Theorem
	04	Compensation Theorem
	05	Tutorial class
6 th	01	
	02	Maximum power Transfer theorem
		Milliman's Theorem
	03	Review of A.C. through R-L, R-C & R-L-C Circuit
	04	Solution of problems of A.C. through R-L, R-C & R-L-C series Circuit by
	05	complex algebra method.
- th	05	Tutorial class
7 th	01	Solution of problems of A.C. through R-L, R-C & R-L-C parallel & Composite Circuits
	02	Power factor & power triangle.
	03	Deduce expression for active, reactive, apparent power Series resonance & band width in RLC Circuit
	04	
		Resonant frequency for a tank circuit
3 th	05	Tutorial class
)	01	Q factor & selectivity in series circuit

GOVT. POLYTECHNIC KORAPUT DEPARTMENT OF ELECTRICAL ENGG.

	02	Poly phase Circuit
	03	Voltage, current & power in star & delta connection
	04	Three phase balanced circuit
	05	Tutorial class
th	01	Self Inductance and Mutual Inductance
	02	Conductively coupled circuit and mutual impedance
	03	Conductively coupled circuit and mutual impedance
	04	Dot convention
	05	Tutorial class
10 th	01	Coefficient of coupling
	02	Series and parallel connection of coupled inductors
	03	Steady state & transient state response to R-L under DC condition
	04	Steady state & transient state response to R-L under DC condition
-	05	Tutorial class
11 th	01	Steady state & transient state response to R-C circuit under DC condition.
	02	Steady state & transient state response to R-C circuit under DC
	03	Steady state & transient state response to RLC circuit under DC condition
	04	Steady state & transient state response to RLC circuit under DC condition
-	05	Tutorial class
12 th	01	Application of Laplace transform for solution of D.C transient circuits.
12	02	Application of Laplace transform for solution of D.C transient circuits.
	03	Open circuit impedance (z) parameters
	04	Open circuit impedance (z) parameters
	05	Tutorial class
13 th	01	Short circuit admittance (y) parameters
	02	Short circuit admittance (y) parameters
	03	Transmission (ABCD) parameters
	04	Hybrid (h) parameters
	05	Tutorial class
14 th	01	Inter relationships of different parameters
	02	T and π representation
	03	Classification of filters.
	00	Filter networks.
	04	Equations of filter networks.
	04	Classification of pass Band, stop Band and cut-off frequency
	05	Tutorial class
15 th	01	Characteristic impedance in the pass and stop bands
15	02	Constant – K low pass filter
	UZ	Constant – K low pass litter Constant – K high pass filter
	02	Constant – K light pass filter Constant – K Band pass filter
	03	Constant – K Band pass inter Constant – K Band elimination filler
	04	m- derived T section filter
	04	
	05	Tutorial class

(Signature of Concerned.
(Signature of Concerned.
faculty)

(HOD Electrical)